diff options
author | lshprung <lshprung@yahoo.com> | 2020-04-20 11:25:56 -0700 |
---|---|---|
committer | lshprung <lshprung@yahoo.com> | 2020-04-20 11:25:56 -0700 |
commit | 8bd507e9a494cee9de28f71f0f3d7e3397152da2 (patch) | |
tree | 6a1c1115b56d81a4468d3904f47e6fe267d86362 /2.2.md | |
parent | c1a5235caccaf8b5fae05e4b2764b926f3a9c851 (diff) |
Diffstat (limited to '2.2.md')
-rw-r--r-- | 2.2.md | 185 |
1 files changed, 185 insertions, 0 deletions
@@ -0,0 +1,185 @@ +[\<- 2.1](2.1.md) + +--- + +# 2.2 Set Operations p1 + +We can represent sets in a **Venn Diagram** as circles/ellipses that lie inside some **universal set** + +``` ++----------+ +| | +| +--+ u | +| | s| | +| | | | +| +--+ | ++----------+ +``` + +- "rectangle is universal set `u` + +- Ex. + - Let `u` = ℤ + - 'A' = `{2k | k∈ℤ}` + - 'B' = `{3l | l∈ℤ}` + 1. Draw a Venn Diagram and write at least on element in each "region" + +``` ++---------------------+ +| | +| +-------+ u | +| | A | | +| | +-------+ | +| | | | | | +| +----|--+ | | +| | B | | +| +-------+ | ++---------------------+ +``` + +- `u` is representing ℤ +- Examples that belong in each region: + - Inside 'A', outside 'B' + - 2 + - 4 + - Inside 'B', outside 'A' + - 3 + - -9 + - Inside both 'A' and 'B' + - 6 + - 0 + - -18 + - Outside of both 'A' and 'B' (but inside `u`) + - 7 + - 5 + +- **Definitions**: If 'A', 'B' are sets, the + 1. **Intersection** of 'A' and 'B', written `A∩B`, is the set of all elements in 'A' **and** 'B' + 2. **Union** of 'A' and 'B', written `A∪B`, is the set of all elements in 'A' **or** 'B' + - the "or" is inclusive, btw + +### Intersection Venn Diagram + +``` ++---------------------+ +| A↓ | +| +-------+ u | +| | | | +| | +-------+ | +| | |██| | | +| +----|--+ |← | +| | |B | +| +-------+ | ++---------------------+ +``` + +- `A∩B` = shaded + +### Union Venn Diagram + +``` ++---------------------+ +| A↓ | +| +-------+ u | +| |███████| | +| |████+-------+ | +| |████|██|████| | +| +----|--+████|← | +| |███████|B | +| +-------+ | ++---------------------+ +``` + +- `A∪B` = shaded + +|Words|Logic|Sets| +|-----|-----|----| +|and |^ |∩ | +|or |∨ |∪ | + +- Describe `A∩B`, `A∪B` in the earlier example + - `A∩B` = multiples of 2 **and** 3 + - multiples of 6 + - `A∪B` = multiples of 2 **or** 3 + - 2, 3, 4, 6, 8, ... + +--- + +- **Definition**: If `A∩B` = Ø, we say 'A' and 'B' are **disjoint** + +``` ++---------------------+ +| | +| +-------+ u | +| | A | | +| | | | +| | | +----+ | +| +-------+ | B | | +| | | | +| +----+ | ++---------------------+ +``` + +- Notice how 'A' and 'B' don't overlap at all + +- **Definition**: Fix a universal set `u`, and `S ≺= u`. The **complement** of 'S', written s̅ or s^c, is the set of elements `u` not in 'S' + +**complement** + +``` ++---------------------+ +|█████████████████████| +|██+-------+██████u███| +|██| S |██████████| +|██| |██████████| +|██| |██████████| +|██+-------+██████████| +|█████████████████████| +|█████████████████████| ++---------------------+ +``` + +- Everything outside of 'S' and inside `u` is shaded + - the shaded region is s̅ + +- **Definition**: The **difference** of 'A' and 'B', written `A-B` or `A\B`, is the set of elements **in 'A' but not 'B'** + +``` ++---------------------+ +| A↓ | +| +-------+ u | +| |███████| | +| |████+-------+ | +| |████| | | | +| +----|--+ |← | +| | |B | +| +-------+ | ++---------------------+ +``` + +- The shaded region is `A-B` + +- **Note**: `A-B` = `A∩¯(B̄̄̄̄̄̄̄̄̄)` + - (line above 'B' -> complement of B) + +--- + +## Set Identities + +| | | | +|-|-|-| +|**Commutative**|`A∪B` = `B∪A`|`A∩B` = `B∩A`| +|**Associative**|`A∪(B∪C)` = `(A∪B)∪C`|`A∩(B∩C)` = `(A∩B)∩C`| +|**De Morgan (for sets)|`¯(A∩B)` (not in ('A and 'B')) = `¯(A)∪¯(B)`|`¯(A∪B)` (not in ('A or 'B')) = `¯(A)∩¯(B)`| + +--- + +# 2.2 Set Operations p2 + +Ex: Let `A ≺= B`. Prove that `A∪B ≺= B` +- Proof: Let x∈A∪B. Then, x∈A or x∈B. + - Case 1: If x∈A, then x∈B since `A ≺= B` + - Case 2: If x∈B, then we are done + - ∴ x∈B which implies `A∪B ≺= B` ▣ + +- **Theorem**: Let 'A', 'B' be sets. 'A' = 'B' iff `A ≺= B` and `B ≺= A` |