summaryrefslogtreecommitdiff
path: root/1.3.md
diff options
context:
space:
mode:
Diffstat (limited to '1.3.md')
-rw-r--r--1.3.md101
1 files changed, 101 insertions, 0 deletions
diff --git a/1.3.md b/1.3.md
new file mode 100644
index 0000000..a46f0e4
--- /dev/null
+++ b/1.3.md
@@ -0,0 +1,101 @@
+[\<- 1.1](1.1.md)
+
+---
+
+# 1.3 Propositional Equivalences p1
+
+- Definition: We say propositinos `p` and `q` are **logically equivalent** if they have the **same truth table outputs**
+ - Notated as `p≡q` (three lign equal sign)
+ - kind of similar to `<->`
+
+- Defining terms using the conditional `p->q`
+ - **Converse**: `q->p` (if q, then p)
+ - **Inverse**: `┓p->┓q`
+ - **Contrapositive**: `┓q->┓p` (if not q, then not p)
+ - The original conditional and the contrapositive are equivalent
+ - So are the converse and the inverse
+ - Why is `p->q≡┓q->┓p`
+Reason 1: Truth Table
+
+|p|q|p->q|┓p|┓q|┓q->┓p|
+|-|-|----|--|--|------|
+|T|T|T |F |F |T
+|T|F|F |T |F |F
+|F|T|T |F |T |T
+|F|F|T |T |T |T
+
+- Since their truth table outputs are the same, these two statements are the same
+
+Reason 2: Logic/Venn Diagram
+
+- `p->q` -> "If we are in p, then we are in q"
+- `┓q->┓p` -> "If we are not in q, then we are not in p"
+- Both these statements describe the same venn diagram
+
+---
+
+- Ex: Show `(p->q)^(q->p)≡p<->q
+
+Truth Table:
+
+|p|q|p->q|q->p|(p->q)^(q->p)|p<->q|
+|-|-|----|----|-------------|-----|
+|T|T|T |T |T |T |
+|T|F|F |T |F |F |
+|F|T|T |F |F |F |
+|F|F|T |T |T |T |
+
+- The output is logically equivalent since their truth table outputs are the same
+
+- Ex: Fill in the blank: ┓(I'm tall and I have black hair) ≡ I'm not tall _____ I don't have black hair
+ - The negation is saying, "it is not the case that..."
+ - The correct answer is `∨` (or)
+
+- Now use a truth table to show `┓(p^q)≡┓p∨┓q`
+
+Truth Table:
+
+|p|q|┓(p^q)|┓p∨┓q|
+|-|-|------|-----|
+|T|T|F |F |
+|T|F|T |T |
+|F|T|T |T |
+|F|F|T |T |
+
+- This example is true because of DeMorgan's Law
+
+- Ex: Use a truth table to show that `p->q≡┓p∨q`
+
+Truth Table:
+
+|p|q|p->q|┓p∨q|
+|-|-|----|----|
+|T|T|T |T |
+|T|F|F |F |
+|F|T|T |T |
+|F|F|T |T |
+
+---
+
+# 1.3 Propositional Equivalences p2
+
+## Definitions
+- A proposition that is **always true** is a **tautology**
+ - (tautology≡`T`)
+ - e.g. `p∨┓p≡T`
+
+- A proposition that is **always false** is a **contradiction**
+ - (contradiction≡`F`)
+ - e.g. `p^┓p≡F`
+
+- A proposition that can be **true or false** is a **contingency**
+
+[Table of Common Equivalences](1.3.pdf)
+
+### Ways to show p≡q
+
+1. Truth Tables
+2. Show `p<->q` is a tautology (multiple options)
+ - with a truth table
+ - by (3)
+3. Use table of Common Equivalences (see link above)